a2 United States Patent

Robinson et al.

US009465697B2

US 9,465,697 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) PROVISION OF BACKUP
FUNCTIONALITIES IN CLOUD
COMPUTING SYSTEMS

(75) Inventors: Matthew Douglas Robinson,
Sunnyvale, CA (US); Keith J. Tenzer,
Munich (DE)

(73) Assignee: NETAPP, INC., Sunnyvale, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 244 days.

(21) Appl. No.: 13/239,188

(22) Filed: Sep. 21, 2011
(65) Prior Publication Data
US 2014/0082167 Al Mar. 20, 2014
(51) Imt.CL
GO6F 11/14 (2006.01)
(52) US. CL
CPC GO6F 11/1458 (2013.01); GO6F 2201/815
(2013.01)
(58) Field of Classification Search
CPC ittt GO6F 15/173
USPC ittt 709/223

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,366,742 Bl 4/2008 Umbehocker et al.
8,195,153 Bl 6/2012 Frencel et al.
2003/0217264 Al* 11/2003 Martin et al. 713/156
2005/0044197 Al 2/2005 Lai
2005/0160118 Al 7/2005 Berkowitz et al.
2005/0260989 Al 11/2005 Pourtier et al.

2007/0112836 Al
2007/0186068 Al
2008/0133622 Al
2008/0172414 Al*
2009/0112948 Al
2009/0240724 Al
2009/0249005 Al

5/2007 Lanzatella et al.
8/2007 Agrawal
6/2008 Brown et al.
7/2008 Tien et al.ococvev. 707/104.1
4/2009 Nguyen et al.
9/2009 Das et al.
10/2009 Bender et al.

2010/0011178 Al* 1/2010 Feathergill 711/162
2010/0057826 Al* 3/2010 Chow et al. 709/201
2010/0070726 Al 3/2010 Ngo et al.

2010/0235493 Al* 9/2010 Besaw et al. 709/224
2011/0246308 A1 10/2011 Segall et al.

2012/0198457 Al* 82012 Leonelli etal. 718/102

OTHER PUBLICATIONS

Office Action mailed Apr. 2, 2012, for related U.S. Appl. No.

12/765,231, filed Apr. 22, 2010, 14 Pages.
Office Action mailed Nov. 8, 2012, for related U.S. Appl. No.
12/765,231, filed Apr. 22, 2010, 13 Pages.
Office Action mailed May 22, 2013, for related U.S. Appl. No.
12/765,231, filed Apr. 22, 2010, 12 Pages.

* cited by examiner

Primary Examiner — Anthony Mejia

Assistant Examiner — Joseph M Cousins

(74) Attorney, Agent, or Firm — Klein, O’Neill & Singh,
LLP

(57) ABSTRACT

Exemplary embodiments provide various techniques for
providing backup functionalities in a cloud computing sys-
tem. In one exemplary method, a workflow that defines a set
of actions associated with a backup functionality in a cloud
computing system is accessed. A plug-in module that is
configured to perform at least one of the set of actions
associated with the backup functionality is identified from a
number of plug-in modules. This identified plug-in module
is then called to execute the action defined in the workflow.

17 Claims, 8 Drawing Sheets

/ 600

/802
ACCESS ATTRIBUTES ASSOCIATED WITH OBJECTS IN A
CLOUD COMPUTING SYSTEM

y

ACCESS A WORKFLOW

/_ 604

/606
IDENTIFY PLUG-IN MODULES THAT ARE CONFIGURED TO
PERFORM SET OF ACTIONS DEFINED IN WORKFLOW

y

EXECUTE PLUG-IN MODULES

/_ 608

U.S. Patent Oct. 11, 2016 Sheet 1 of 8 US 9,465,697 B2

/100

“* 101

: i 101 101 : i 101

I I e | ||||||
o ’ L [TENANT TENANT
TENANT TENANT 104] 105
102 103 T
Ry - -
2|77]
SERVICE
LAYER
180
AAAIIINY, ARRRARRRERRREI LTI
VIRTUAL DATA [VIRTUAL DATA] VIRTUAL DATA
CENTERS 110 _ CENTERS 111 CENTERS 112
e .] ARINENEENE
A

— A

7 O i e Iy ©

VIRTUAL
CENTER
LAYER
182

S

oo ooodon
ooood oobdaon
STORAGE
LAYER ;{;E

184 140 1 141 1) 4

/ 131

N

U.S. Patent Oct. 11, 2016 Sheet 2 of 8 US 9,465,697 B2

/ 100

CTENANT 101
104 /
VIRTUAL H % — -
CLoUD | 201 202 |:
DIRECTOR 210] T i
(PARTOF | |/ ; — — A
CLOUD

SERVICE

LAYER 180) //,,111

I A
— 220 221 222
7 7 7
=EE
% Ol ||ER O m QO
VIRTUAL
CENTER
LAYER
182
| N OO000O0oao oogoaao
OO0O0OOoOo ooogogno
A T A
STORAGE 7,
LAYER “
184 fﬁjﬁf
%

FiIG. 2

US 9,465,697 B2

Sheet 3 of 8

Oct. 11, 2016

U.S. Patent

& DIAd

0GZ TNAOW ANIONIT NOILVHOILNI dNMOVE

80€ 37114 NOILVHNOIANOD

90¢ 90¢ 90¢ 90¢ 90¢
JTNACI JTNACI IT1NACI FT1NAON JT1NAOCIN
NI-9N71d NI-9N1d NI-9N71d NI-9N71d NI-9N71d

v0C NJLSAS ONILVHEdO

¢0€ W31SAS ONISS300dd

U.S. Patent Oct. 11, 2016 Sheet 4 of 8 US 9,465,697 B2

/ 400

/ 402
ACCESS A WORKFLOW

/404
IDENTIFY PLUG-IN MODULES THAT ARE CONFIGURED TO
PERFORM THE ACTIONS DEFINED IN THE WORKFLOW

/ 406
CALLING PLUG-IN MODULES TO EXECUTE THE ACTIONS
DEFINED IN THE WORKFLOW

FiG. 4

U.S. Patent Oct. 11, 2016 Sheet 5 of 8 US 9,465,697 B2

/ 500

QUIESCE DATABASE

QUIESCE VIRTUAL MACHINE
TAKE SNAPSHOT

UNQUIESCE VIRTUAL MACHINE
UNQUIESCE DATABASE

abkwb =

FIG. 5

U.S. Patent Oct. 11, 2016 Sheet 6 of 8 US 9,465,697 B2

/ 600

/ 602
ACCESS ATTRIBUTES ASSOCIATED WITH OBJECTS IN A
CLOUD COMPUTING SYSTEM

/ 604
ACCESS A WORKFLOW

/ 606
IDENTIFY PLUG-IN MODULES THAT ARE CONFIGURED TO
PERFORM SET OF ACTIONS DEFINED IN WORKFLOW

/ 608
EXECUTE PLUG-IN MODULES

FIG. 6

U.S. Patent

Oct. 11, 2016

Sheet 7 of 8

/ 500

1. QUIESCE DATABASE —
2. QUIESCE VIRTUAL MACHINE —

3. TAKE SNAPSHOT

4. UNQUIESCE VIRTUAL\

MACHINE

5. UNQUIESCE DATABASE

US 9,465,697 B2

DATABASE
QUIESCE/
UNQUIESCE
PLUG-IN MODULE
202

e

VM QUIESCE
PLUG-IN MODULE
504

N

SNAPSHOT PLUG-
IN MODULE
506

VM UNQUIESCE
PLUG-IN MODULE
508

DATABASE
QUIESCE/
UNQUIESCE
PLUG-IN MODULE
502

FiG. 7

U.S. Patent Oct. 11, 2016 Sheet 8 of 8 US 9,465,697 B2

824 302 —\ o~
\ 82—\ /_ 808 B0

PROCESSOR

VIDEO
I ¢ > DISPLAY

INSTRUCTIONS

804 812
\ /_

824
\ MAIN MEMORY ALPHA-NUMERIC
\ ¢ ¢ INPUT
INSTRUCTIONS DEVICE

806 814
\ /_

824 _\STATIC MEMORY

USER INTERFACE
NAVIGATION DEVICE

BUS
[)
v

INSTRUCTIONS

820\ /—816

DRIVE UNIT — 822
NETWORK
INTERFACE le l¢

DEVICE MACHINE-
READABLE
MEDIUM
824 N
N INSTRUCTIONS
850

P

SIGNAL GENERATION
DEVICE

COMPUTER
NETWORK

US 9,465,697 B2

1
PROVISION OF BACKUP
FUNCTIONALITIES IN CLOUD
COMPUTING SYSTEMS

FIELD

The present disclosure relates generally to data storage. In
an exemplary embodiment, the disclosure relates to the
provision of backup functionalities in cloud computing
systems.

BACKGROUND

In general, cloud computing is a model for enabling
on-demand network access to a shared pool of configurable
computing resources. A cloud computing system is a com-
plicated system with many interrelated levels of abstraction,
such as a cloud service layer, a virtual center layer, and a
storage layer. As a result, objects that reside in one layer are
often dependent upon other objects in a different layer. For
example, a virtual application, which resides in the cloud
service layer, is a logical entity comprising a number of
hypervisor-managed virtual machines that reside in a dif-
ferent virtual center layer.

There are many specialized data management systems
that provide various data management functionalities, such
as the automation of data backup and restoration of data, in
a cloud computing system. However, many of these con-
ventional data management systems are designed to back up
objects without consideration of other interrelated objects.
As an example, conventional data management systems can
back up one or more hypervisor-managed virtual machines,
but cannot back up the virtual applications associated with
the hypervisor-managed virtual machines.

Given that many of these conventional data management
systems do not account for the interrelations between objects
in the cloud computing system, the data management sys-
tems cannot effectively prepare the various interrelated
objects for data backup and restoration of data. As an
example, a database may be hosted within a hypervisor-
managed virtual machine, but conventional data manage-
ment systems, when backing up the hypervisor-managed
virtual machine, do not take this database into consideration.
Accordingly, the database cannot be placed in a state that is
ready for back up. Such an inability to prepare the interre-
lated objects for backup operations may result in backups of
objects in inconsistent states, thereby not being able to
provide an accurate backup of data in the cloud computing
system.

Nonetheless, many of these conventional data manage-
ment systems can be used to back up all objects and their
attributes in a cloud computing system. However, a user
must identify and manually define all the interrelated objects
for backup in such a conventional data management system,
but such a manual process can be labor intensive and
requires the user to have extensive knowledge about the
cloud computing system.

SUMMARY

Exemplary embodiments provide various techniques for
providing backup functionalities in the cloud computing
system. In particular, a user can orchestrate and automate the
back up or restoration of data by defining a workflow. In one
example, such a workflow can define a sequence of actions
related to various backup functionalities. To execute the
sequence of actions, an embodiment of the present invention

10

15

20

25

30

35

40

45

50

55

60

65

2

automatically identifies and calls the appropriate plug-in
modules that are configured to perform the actions.

This ability to define a workflow provides a user with the
flexibility to integrate various actions taken on different,
interrelated objects in a cloud computing system. As a result,
a workflow can automatically define actions performed on
various objects in a cloud computing system to prepare the
objects to be backed up or restored. For example, before a
backup of a hypervisor-managed virtual machine can be
created, a database hosted on the hypervisor-managed vir-
tual machine is quiesced to place the database in a state that
is ready to accept the backing up of the data. Such a quiesce
operation can include temporarily preventing access to the
database. An example of a workflow can define actions to
quiesce the database as part of the hypervisor-managed
virtual machine backup process. A plug-in module that is
configured to quiesce the database is automatically called to
quiesce the database. After the database is quiesced using
this selected plug-in module, the backing up of the hyper-
visor-managed virtual machine or other backup functional-
ities may then be initiated. The workflows can be stored and
reused by, for example, a user without extensive knowledge
of a cloud computing system to execute the backup func-
tionalities defined in the various workflows.

BRIEF DESCRIPTION OF DRAWINGS

The present disclosure is illustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which like references indicate similar elements
and in which:

FIG. 1 is an architectural diagram of a high-level over-
view of an example of a cloud computing system;

FIG. 2 is an architectural diagram of a more detailed
overview of the example of the cloud computing system
depicted in FIG. 1;

FIG. 3 depicts a block diagram of various modules that
may be included in a processing system that provides
various backup functionalities based on a workflow, in
accordance with an embodiment of the present invention;

FIG. 4 depicts a flow diagram of a general overview of a
method, in accordance with an embodiment, for providing
backup functionalities in a cloud computing system;

FIG. 5 depicts an example of a workflow that defines a set
of actions associated with various backup functionalities;

FIG. 6 depicts a flow diagram of a more detailed overview
of a method, in accordance with an embodiment, for pro-
viding backup functionalities in a cloud computing system;

FIG. 7 depicts a block diagram illustrating an identifica-
tion of plug-in modules that are configured to perform
various actions defined in the workflow, in accordance with
an exemplary embodiment of the present invention; and

FIG. 8 depicts a hardware block diagram of a machine in
the example form of a processing system within which may
be executed a set of instructions for causing the machine to
perform any one or more of the methodologies discussed
herein.

DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The description that follows includes illustrative systems,
methods, techniques, instruction sequences, and computing
machine program products that embody the present inven-
tion. In the following description, for purposes of explana-
tion, numerous specific details are set forth in order to
provide an understanding of various embodiments of the

US 9,465,697 B2

3

inventive subject matter. It will be evident, however, to one
skilled in the art that embodiments of the inventive subject
matter may be practiced without these specific details. In
general, well-known instruction instances, protocols, struc-
tures and techniques have not been shown in detail. Fur-
thermore, the term “exemplary” is construed merely to mean
an example of something or an exemplar and not necessarily
a preferred or ideal means of accomplishing a goal.

FIG. 1 is an architectural diagram of a high-level over-
view of an example of a cloud computing system 100.
Generally, cloud computing is a model for enabling on-
demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, appli-
cations, and services) that can be provisioned and released
with minimal management effort or service provider inter-
action. An example of such a cloud computing system 100
is depicted in FIG. 1. In this example, the cloud computing
system 100 can be divided into a cloud service layer 180, a
virtual center layer 182, and a storage layer 184.

The cloud service layer 180 includes client computing
devices 101 in communication with virtual data centers
110-112. The cloud service layer 180 is an abstraction layer
on top of the virtual center layer 182 and, as explained in
more detail below, abstracts the resources managed by the
virtual center layer 182. This cloud service layer 180 pro-
vides support for multi-tenancy, which generally refers to a
principle in software architecture where a single instance of
a software runs on a server, serving multiple client tenants
102-105. As used herein, a “tenant” refers to a user having
his own set of data that remains logically isolated from data
that belongs to other tenants. Each tenant 102, 103, 104, or
105 has access to a self-service portal with its own virtual
data center 110, 111, or 112. A virtual data center 110, 111,
or 112 can be an abstract object that defines a logical group
of virtual appliances, and depending on each tenant’s
requirement, each tenant 102, 103, 104, or 105 maps to a
virtual data center 110, 111, or 112. In the cloud service layer
180 depicted in FIG. 1, tenant 104 maps to virtual data
center 111, tenant 105 maps to virtual data center 112, and
tenants 102 and 103 map to virtual data center 110.

The virtual center layer 182 provides the computing
resources for the virtual data centers 110-112, where each
virtual data center 110, 111, or 112 has a defined set of
computing resources. The virtual center layer 182 provides
a cloud operating system 121 that is able to manage large
pools of virtualized computing infrastructure, including soft-
ware and hardware. It should be noted that within the cloud
operating system 121, computing resources are partitioned
into virtual data center groups to provide resources to the
virtual data centers 110-112. Such a separation of tenants
and resources provide an additional level of security as well
as independent scaling of tenants and management of
resources.

The storage layer 184 provides storage resources for the
virtual data centers 110-112. In one example, the storage
layer 184 can include one or more network attached storage
(NAS) devices 131 that support multi-tenancy architecture.
When used within a NAS environment, the NAS devices
131 may be embodied as one or more file servers that are
configured to operate according to a client/server model of
information delivery to thereby allow multiple client com-
puting devices (clients) 101 to access shared resources, such
as files, stored on the file servers. The storage of information
on a NAS environment can be deployed over a computer
network that includes a geographically distributed collection
on interconnected communication links, such as Ethernet,
that allows client computing devices 101 to remotely access

10

15

20

25

30

35

40

45

50

55

60

65

4

the information (e.g., files) on the file server. The client
computing devices 101 can communicate with the file server
by exchanging discrete frames or packets of data according
to predefined protocols, such as Transmission Control/Inter-
net Protocol (TCP/IP). These NAS devices 131 enable the
creation of isolated logical partitions 140-142 on a single
NAS device 131 such that no information on a secured
virtual partition can be accessed by unauthorized tenants
102-105. In another example, the storage layer 184 can be
deployed within a Storage Area Network (SAN) environ-
ment. A SAN is a high-speed network that enables estab-
lishment of direct connections between a storage system and
its storage devices. The SAN may thus be viewed as an
extension to a storage bus and, as such, an operating system
of such a storage system enables access to stored data using
block-based access protocols over an extended bus. In this
context, the extended bus can be embodied as Fibre Chan-
nel, Computer System Interface (SCSI), Internet SCSI
(iSCSI) or other network technologies.

FIG. 2 is an architectural diagram of a more detailed
overview of the example of the cloud computing system 100
depicted in FIG. 1. In reference to FIG. 2, the detailed cloud
computing system 100' again can be divided into a cloud
service layer 180, a virtual center layer 182, and a storage
layer 184. However, in this embodiment, the cloud service
layer 180 comprises a virtual cloud director 210. The virtual
cloud director 210 abstracts resources that are managed in
the virtual center layer 182. In general, the virtual cloud
director 210 abstracts virtual center resources by providing
different names and groupings. For example, a virtual data
center 111 points to a virtual center server for resources and
resource pools, and virtual applications 201 and 202 are
deployed to virtual data centers (e.g., virtual data center
111), which are comprised of one or more hypervisor-
managed virtual machines 220-222 on the virtual center
server environment. In short, virtual cloud director 210 uses
its own definition of objects, and those objects may have
different names and associations at the virtual center layer
182. The virtual cloud director 210 combines these resources
into large pools for consumption by tenant 104. Examples of
resource types that can be pooled include computing clusters
and resource pools, network digital-video switches and port
groups, virtual machine file systems, and network file sys-
tem shares. Additionally, the virtual cloud director 210 also
adds a self-service portal.

Here, tenant 104 has access to a self-service portal with its
own data center 111. This example of the cloud computing
system 100' supports the creation of virtual applications 201
and 202. A “virtual application,” as used herein, refers to a
logical entity comprising a number of hypervisor-managed
virtual machines 220-222 that encapsulate a component of a
multitier application. In other words, a virtual application is
a logical container for one or more hypervisor-managed
virtual machines 220-222. It should be appreciated that a
“virtual machine,” as used herein, is a software emulation of
a programmable machine, where the software implementa-
tion is constrained within another computer at a higher or
lower level of symbolic abstraction. A “hypervisor” (or
“virtual machine manager”) refers to a program that allows
multiple operating systems to share a single hardware host.
The hypervisor provides operating systems a virtual oper-
ating platform and monitors the execution of the operating
systems.

It should be noted that each virtual cloud director (e.g.,
virtual cloud director 210) can have one or more virtual data
centers (e.g., virtual data center 111) per tenant (e.g., tenant
104), and the virtual applications 201 and 202 are included

US 9,465,697 B2

5

within the virtual data centers. As a result, a customer (e.g.,
tenant 104) can buy information technology space from a
cloud provider, which manages the tenants (including tenant
104) through a single virtual cloud director 210 (or a cloud
service layer). Each tenant (e.g., tenant 104) can have one or
more virtual data centers (e.g., virtual data center 111) that
run virtually in separate physical locations. These virtual
data centers can run one or more virtual applications (e.g.,
virtual applications 201 and 202).

In the virtual center layer 182, one or more physical
computing devices host the hypervisor-managed virtual
machines 220-222. Alternatively, the virtual center layer 182
itself may be hosted on a hypervisor-managed virtual
machine. Virtual applications 201 and 202 may allow multi-
tier applications to be encapsulated using the open virtual-
ization format (OVF) standard, which includes operational
policies and service levels. Within a virtual application 201
or 202, a tenant 104 can, for example, set power-on sequenc-
ing options, control resource allocation, and provide addi-
tional customization as required by the application. A virtual
application 201 or 202 also enables transfer of application
between clouds.

In the embodiment depicted in FIG. 2, the virtual center
layer 182 can host a backup integration engine module 250,
which, as explained below, is configured to provide a variety
of backup functionalities in the cloud computing system
100'. A “backup functionality,” refers to any suitable func-
tionality that results in or operates on a data backup, which
refers to a copy of the data. An example of a backup
functionality is a backing up of data. Another example of a
backup functionality includes the restoration of a data
backup. As used herein, a “backing up” of or “to back up”
data generally refers to the process of creating a copy of the
data (or a data backup). As explained in more detail below,
the backup integration engine module 250 provides the
backup functionalities based on a workflow. In an alternative
embodiment, one or more of the virtual applications 201 and
202 can also host the backup integration engine module 250.

FIG. 3 depicts a block diagram of various modules that
may be included in a processing system 302 that provides
various backup functionalities based on a workflow, in
accordance with an embodiment of the present invention. It
should be appreciated that the processing system 302 may be
deployed in the form of, for example, a network-attached
storage device, a server computer, a personal computer, a
laptop computer, and/or other processing systems. The pro-
cessing system 302 may be included in a cloud computing
system. For example, the processing system 302 may form
a part of the virtual center layer 182 with the cloud com-
puting system 100' depicted in FIG. 2. In various embodi-
ments, the processing system 302 may be used to implement
computer programs, logic, applications, methods, processes,
or software to provide various backup functionalities, as
described in more detail below.

In the embodiment depicted in FIG. 3, the processing
system 302 executes an operating system 304, which man-
ages various data, hardware resources, and software pro-
cesses executed on the processing system 302. An example
of the operating system 304 can be a network storage
operating system that is specially optimized for storage
functions, such as performing I/O commands and providing
backup functionalities. Some processes and data being man-
aged include plug-in modules 306, a backup integration
engine module 250, and a configuration file 308.

Embodiments of the present invention provide frame-
works that can call or execute different plug-in modules 306.
A “plug-in module” refers to a program that interfaces with

10

15

20

25

30

35

40

45

50

55

60

65

6

a host application (e.g., the backup integration engine mod-
ule 250) to extend, modify, and/or enhance the capabilities
or functionalities of the host application. The plug-in mod-
ules 306 effectively depend on the host application and may
not function independently without the host application. The
plug-in modules 306 can perform a variety of different
actions. For example, one or more of the plug-in modules
306 can include scripts that perform a quiesce operation. As
used herein, a “quiesce” operation is to place an application
in a state ready to accept a backup functionality. In particu-
lar, an application is quiesced when it is placed in a special
mode that allows the backup functionality to be imple-
mented. It should be appreciated that the state for one
application may be different for another application. As a
result, quiescing an application may be unique to each
application. Accordingly, there is a variety of different
techniques to quiesce an application. In one example of
quiescing a database management system, a connection is
first made to the database management system. Thereafter,
the database management system may be instructed to place
all its database tables, which store the data, into read-only
mode where data can be read but not written to the database
tables. This placement of the database tables in read-only
mode may, for example, prevent data corruption during a
backup process. Other examples of quiesce operations
include preventing users from connecting to an application,
locking all users out of a database table or other structured
data, disallowing new resources from being made available,
preventing modification of data, disabling the application
itself (e.g., shutdown application and place application in
sleep mode), allowing current active transactions to com-
plete and then flushing modified buffers from cache to
another database table, reinitiating or restarting an applica-
tion, modifying a file system, and other quiesce operations.

In another example, one or more plug-in modules 306 can
include scripts that perform an unquiesce operation. As used
herein, an “unquiesce” operation refers to the reversion of a
state of an application to a previous state before quiescing
the application. As an example, such a previous state may
refer to an application’s normal mode or state of operation.

In other examples, one or more plug-in modules 306 can
include scripts that perform a backup operation and/or a
restore operation. Examples of such backup operations
include taking a snapshot of data, cloning data, and mirror-
ing of data. A snapshot is an instant copy within a file
system. Such a snapshot can practically, for example, copy
large amounts of data in a few seconds. More particularly, a
snapshot is a space conservative, point-in-time, and read-
only image of data accessible by name that provides a
consistent image of that data (such as a storage system) at
some previous time. A snapshot is a point-in-time represen-
tation of a storage element, such as an active file system, file
or database, stored on a persistent storage device and having
a name or other identifier that distinguishes it from other
snapshots taken at other points in time. In a write-anywhere
file system, a snapshot is an active file system image that
contains complete information about the file system, includ-
ing all suitable metadata.

A clone is a modifiable copy created from a snapshot. It
should be appreciated that since the modifiable copy is
created from a snapshot, the modifiable copy may therefore
be a near-instantaneous, space efficient, and, in an example
embodiment, a writable “clone” of the snapshot, which
shares the same physical blocks with the baseline file
system. When the snapshot and the modifiable copy diverge
(e.g., due to continuing updates in the production database
or development changes to a modifiable copy of the data-

US 9,465,697 B2

7

base), the divergent blocks are separately stored. Since the
creation of a modifiable copy from a snapshot is near
instantaneous, such replication technique may result in
minimal downtime of the accessibility of the data.

A mirror is an exact copy of a data set. Here, the data is
mirrored onto the secondary storage system to ensure, for
example, that the primary copy is kept up-to-date with the
data. Mirroring can be synchronous, where, for example, a
block of the data written to the primary storage system is
also immediately transmitted to the secondary storage sys-
tem. In asynchronous mirroring, the block of data written to
the primary storage system is transmitted to the secondary
storage system at a later time.

Still referring to FIG. 3, in one exemplary embodiment,
the operating system 304 includes a configuration file 308
that includes one or more workflows that, as explained in
more detail below, define actions to be taken related to
backup functionalities. The backup integration engine mod-
ule 250 is adapted to interface with all plug-in modules 306
and further adapted to call, load, or execute selected plug-in
modules 306 based on actions defined within the workflow.

It should be appreciated that in other embodiments, the
operating system 304 may include fewer or more modules
apart from those shown in FIG. 3. For example, in an
alternate embodiment, configuration file 308 may be stored
elsewhere in a different processing system 302. In FIG. 3,
the modules 250 and 306 are in the form of software that is
processed by a processor. However, as explained in more
detail below, the modules 250 and 306 may also be in the
form of firmware that is processed by application specific
integrated circuits (ASIC), which may be integrated into a
circuit board. Alternatively, the modules 250 and 306 may be
in the form of one or more logic blocks included in a
programmable logic device (for example, a field program-
mable gate array). The described modules 250 and 306 may
be adapted, and/or additional structures may be provided, to
provide alternative or additional functionalities beyond
those specifically discussed in reference to FIG. 3. Examples
of such alternative or additional functionalities will be
discussed in reference to the flow diagrams discussed below.

FIG. 4 depicts a flow diagram of a general overview of a
method 400, in accordance with an embodiment, for pro-
viding backup functionalities in a cloud computing system.
In some exemplary embodiments, the method 400 may be
implemented by the backup integration engine module 250
of FIG. 3 and employed in, for example, the virtual center
layer 182 of FIG. 2. As depicted in FIG. 4, the backup
integration engine module 250 initially accesses a worktlow
at 402. As used herein, a “workflow” refers to a scheduling
of actions related to backup functionalities. In particular, the
workflow defines a set of actions or instructions associated
with backup functionalities in the cloud computing system.
In one embodiment, an action defined in the workflow can
be an operation on an object in a cloud computing system.
An “object,” as used herein, refers to an entity that can be
manipulated by the commands of a programming language,
such as a value, variable, function, or data structure. In a
cloud computing system, examples of objects include virtual
applications and hypervisor-managed virtual machines. Fur-
thermore, the workflow can also define a scheduling or order
of each action relative to other actions. A workflow may be
defined in a file, such as the configuration file discussed
above in FIG. 3.

With the workflow accessed, the backup integration mod-
ule identifies plug-in modules at 404 that are configured to
perform the actions defined in the workflow. As an example,
a workflow may define a quiesce operation for a certain

10

15

20

25

30

35

40

45

50

55

60

65

8

database, and the backup integration module having access
to the workflow identifies a particular plug-in module that is
configured to perform the quiesce operation. In another
example, the workflow may define a snapshot operation, and
the backup integration module identifies a particular plug-in
module that is configured to perform this snapshot opera-
tion.

After the plug-in modules are identified, the backup
integration module, at 406, calls the identified plug-in mod-
ules to execute the actions defined in the workflow. As
explained in more detail below, each plug-in module can be
executed based on a scheduling defined in the workflow.

FIG. 5 depicts an example of a workflow that defines a set
of actions associated with various backup functionalities. In
this example, the workflow 500 defines a set of actions in the
form of scripts. As used herein, a “script” refers to a program
with one or more instructions, commands, parameters, and/
or other data that control one or more applications. A script
may, for example, refer to a single command, a single
instruction, a set of commands, or a set of instructions. The
script may be user-defined.

In the exemplary workflow 500, the set of actions include
scripts for quiescing a database, quiescing a hypervisor-
managed virtual machine, taking a snapshot, unquiescing the
hypervisor-managed virtual machine, and unquiescing the
database. Each of these actions are defined in sequence
having numbers 1, 2, 3, 4, and 5, where these numbers define
a sequence for executing the actions. In this example, the
actions are executed in increasing sequential order. For
example, the quiesce database action, which is ranked
number 1 in the workflow 500, is executed before the
quiesce hypervisor-managed virtual machine action, which
is ranked number 2. The take snapshot action, which is
ranked number 3, is executed after the quiesce hypervisor-
managed virtual machine action because number 3 is ranked
after number 2.

FIG. 6 depicts a flow diagram of a more detailed overview
of a method 600, in accordance with an embodiment, for
providing backup functionalities in a cloud computing sys-
tem. In some exemplary embodiments, the method 600 may
be implemented by the backup integration engine module
250 of FIG. 3 and employed in, for example, the virtual
center layer 182 of FIG. 2. As depicted in FIG. 6 at 602, the
backup integration module accesses attributes associated
with objects in the cloud computing system. As used herein,
an “attribute” refers to a property or feature associated with
an object in, for example, a cloud computing system. For
example, an attribute can refer to a property or feature
associated with a virtual application or a virtual application
object. Another example of such an attribute includes an
identifier used by the virtual application object to identify a
hypervisor-managed virtual machine object. In yet another
example, an attribute can be a property or feature associated
with a hypervisor-managed virtual machine object. An
example of such an attribute is a name used by a virtual
center to identify a hypervisor-managed virtual machine
object. Yet another example of an attribute includes a pointer
used by a virtual center to identify the hypervisor-managed
virtual machine object.

Additionally, the backup integration module, at 604,
accesses a workflow. In one embodiment, this workflow
defines a set of actions that are associated with the back up
of'the accessed attributes. It should be noted that the back up
of objects in a cloud computing system involves identifying
and backing up the objects’ attributes. In one embodiment,
these attributes may be accessed from the workflow. That is,
in addition to actions, the workflow can also define attributes

US 9,465,697 B2

9

associated with objects in a cloud computing system. A user
can manually define these attributes in the workflow. In an
alternate embodiment, the attributes may be accessed or
identified from the cloud computing system itself. For
example, to obtain or identify attributes associated with a
virtual application, a cloud service layer in the cloud com-
puting system can be queried for a listing of virtual appli-
cations. In response to the query, an attribute associated with
the virtual application is received from the cloud service
layer. An example of such an attribute includes a listing of
hypervisor-managed virtual machines that are associated
with the particular virtual application. In particular, this
listing may include identifiers used by the virtual applica-
tions to identify each of the hypervisor-managed virtual
machines.

Thereafter, the backup integration module identifies, at
606, a number of plug-in modules that are configured to
perform the set of actions. In one example, the backup
integration module can store a listing of all plug-in modules
that are interfaced with the backup integration module. The
listing may include, for example, names of the plug-in
modules, plug-in types, and related items (e.g., other plug-in
modules). From this listing, the backup integration module
can identify the number of plug-in modules that can perform
the set of defined actions. At 608, with the plug-in modules
identified, the backup integration module then executes the
identified plug-in modules to perform the set of actions
defined in the workflow.

FIG. 7 depicts a block diagram illustrating an identifica-
tion of plug-in modules that are configured to perform
various actions defined in the workflow, in accordance with
an exemplary embodiment of the present invention. The
exemplary workflow 500 depicted in FIG. 7 is the same
workflow 500 described above in FIG. 5. As previously
explained, the workflow 500 defines a set of actions in the
form of scripts. In particular, the set of actions include (1)
quiescing a database, (2) quiescing a virtual machine, (3)
taking a snapshot, (4) unquiescing the virtual machine, and
(5) unquiescing the database. The numbers (1)-(5) define a
sequence for executing the actions.

As depicted, the backup integration engine module (not
shown in FIG. 7) initially accesses the workflow 500 and
reads the set of actions (1)-(5) defined in the workflow 500.
The first action scheduled is quiesce database, and the
backup integration engine module identifies and calls a
database quiesce/unquiesce plug-in module 502 that is con-
figured to perform the first action. Thereafter, the second
action scheduled is quiesce hypervisor-managed virtual
machine, and the backup integration module identifies and
calls a virtual machine quiesce plug-in module 504 that is
configured to perform the second action. The third action
scheduled is take snapshot, and the backup integration
module identifies and calls a snapshot plug-in module 506
that is configured to perform this third action. The fourth
action scheduled is unquiesce hypervisor-managed virtual
machine, and the backup integration module identifies and
calls a virtual machine unquiesce plug-in module 508 that is
configured to perform this fourth action. Finally, the fifth
action scheduled is unquiesce database, and the backup
integration module identifies and calls the same database
quiesce/unquiesce plug-in module 502 that is configured to
perform the fifth action.

This ability to define the workflow 500 provides a user
with the flexibility to integrate various actions taken on
different, interrelated objects in a cloud computing system.
As a result, the workflow 500 can define actions performed
on various objects in a cloud computing system to, for

10

15

20

25

30

35

40

45

50

55

60

65

10

example, prepare the objects to be backed up or restored. For
example, as defined in the workflow 500, before a backup
(or snapshot) of a hypervisor-managed virtual machine can
be created, a database hosted on the hypervisor-managed
virtual machine is quiesced to place the database in a state
that is ready to accept the backing up of the data. Such a
quiesce operation can include temporarily preventing access
to the database. Additionally, the hypervisor-managed vir-
tual machine is also quiesced before the back up.

FIG. 8 depicts a hardware block diagram of a machine in
the example form of a processing system 302 within which
may be executed a set of instructions for causing the
machine to perform any one or more of the methodologies
discussed herein. In alternative embodiments, the machine
operates as a standalone device or may be connected (e.g.,
networked) to other machines. In a networked deployment,
the machine may operate in the capacity of a server or as a
peer machine in a peer-to-peer (or distributed) network
system.

The machine is capable of executing a set of instructions
(sequential or otherwise) that specify actions to be taken by
that machine. Further, while only a single machine is illus-
trated, the term “machine” shall also be taken to include any
collection of machines that individually or jointly execute a
set (or multiple sets) of instructions to perform any one or
more of the methodologies discussed herein.

The example of the processing system 302 includes a
processor 802 (e.g., a central processing unit (CPU), a
graphics processing unit (GPU) or both), a main memory 04
(e.g., random access memory), and static memory 806 (e.g.,
static random-access memory), which communicate with
each other via bus 808. The processing system 302 may
further include video display unit 810 (e.g., a plasma display,
a liquid crystal display (LCD) or a cathode ray tube (CRT)).
The processing system 302 also includes an alphanumeric
input device 812 (e.g., a keyboard), a user interface (UI)
navigation device 814 (e.g., a mouse), a disk drive unit 816,
a signal generation device 818 (e.g., a speaker), and a
network interface device 820.

The disk drive unit 816 (a type of non-volatile memory
storage) includes a machine-readable medium 822 on which
is stored one or more sets of data structures and instructions
824 (e.g., software) embodying or utilized by any one or
more of the methodologies or functions described herein.
The data structures and instructions 824 may also reside,
completely or at least partially, within the main memory 804
and/or within the processor 802 during execution thereof by
processing system 302, with the main memory 804 and
processor 802 also constituting machine-readable, tangible
media.

The data structures and instructions 824 may further be
transmitted or received over a computer network 850 via
network interface device 820 utilizing any one of a number
of well-known transfer protocols (e.g., HyperText Transfer
Protocol (HTTP)).

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute software modules (e.g., code
embodied on a machine-readable medium or in a transmis-
sion signal) and/or hardware modules. A hardware module is
a tangible unit capable of performing certain operations and
may be configured or arranged in a certain manner. In
exemplary embodiments, one or more computer systems
(e.g., the processing system 302) or one or more hardware
modules of a computer system (e.g., a processor 802 or a
group of processors) may be configured by software (e.g., an

US 9,465,697 B2

11

application or application portion) as a hardware module
that operates to perform certain operations as described
herein.

In various embodiments, a hardware module may be
implemented mechanically or electronically. For example, a
hardware module may comprise dedicated circuitry or logic
that is permanently configured (e.g., as a special-purpose
processor, such as a field programmable gate array (FPGA)
or an application-specific integrated circuit (ASIC)) to per-
form certain operations. A hardware module may also com-
prise programmable logic or circuitry (e.g., as encompassed
within a general-purpose processor 802 or other program-
mable processor) that is temporarily configured by software
to perform certain operations. It will be appreciated that the
decision to implement a hardware module mechanically, in
dedicated and permanently configured circuitry, or in tem-
porarily configured circuitry (e.g., configured by software)
may be driven by cost and time considerations.

Accordingly, the term “hardware module” should be
understood to encompass a tangible entity, be that an entity
that is physically constructed, permanently configured (e.g.,
hardwired) or temporarily configured (e.g., programmed) to
operate in a certain manner and/or to perform certain opera-
tions described herein. Considering embodiments in which
hardware modules are temporarily configured (e.g., pro-
grammed), each of the hardware modules need not be
configured or instantiated at any one instance in time. For
example, where the hardware modules comprise a general-
purpose processor 802 configured using software, the gen-
eral-purpose processor 802 may be configured as respective
different hardware modules at different times. Software may
accordingly configure a processor 802, for example, to
constitute a particular hardware module at one instance of
time and to constitute a different hardware module at a
different instance of time.

Modules can provide information to, and receive infor-
mation from, other modules. For example, the described
modules may be regarded as being communicatively
coupled. Where multiples of such hardware modules exist
contemporaneously, communications may be achieved
through signal transmission (e.g., over appropriate circuits
and buses) that connect the modules. In embodiments in
which multiple modules are configured or instantiated at
different times, communications between such modules may
be achieved, for example, through the storage and retrieval
of information in memory structures to which the multiple
modules have access. For example, one module may per-
form an operation, and store the output of that operation in
a memory device to which it is communicatively coupled. A
further module may then, at a later time, access the memory
device to retrieve and process the stored output. Modules
may also initiate communications with input or output
devices, and can operate on a resource (e.g., a collection of
information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors 802 that are temporarily configured (e.g., by
software) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors 802 may constitute processor-implemented
modules that operate to perform one or more operations or
functions. The modules referred to herein may, in some
exemplary embodiments, comprise processor-implemented
modules.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
of the operations of a method may be performed by one or

25

35

40

45

50

55

65

12

more processors 802 or processor-implemented modules.
The performance of certain of the operations may be dis-
tributed among the one or more processors 802, not only
residing within a single machine, but deployed across a
number of machines. In some exemplary embodiments, the
processors 802 may be located in a single location (e.g.,
within a home system, an office system or as a server farm),
while in other embodiments the processors 802 may be
distributed across a number of locations.
While the embodiment(s) is (are) described with reference
to various implementations and exploitations, it will be
understood that these embodiments are illustrative and that
the scope of the embodiment(s) is not limited to them. In
general, techniques providing functionalities in a cloud
computing system may be implemented with facilities con-
sistent with any hardware system or hardware systems
defined herein. Many variations, modifications, additions,
and improvements are possible.
Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, opera-
tions, and data stores are somewhat arbitrary, and particular
operations are illustrated in the context of specific illustra-
tive configurations. Other allocations of functionality are
envisioned and may fall within the scope of the embodiment
(s). In general, structures and functionality presented as
separate components in the exemplary configurations may
be implemented as a combined structure or component.
Similarly, structures and functionality presented as a single
component may be implemented as separate components.
These and other variations, modifications, additions, and
improvements fall within the scope of the embodiment(s).
What is claimed is:
1. A method of providing backup functionality for back-
ing up and restoring data stored in a cloud computing
system, the method comprising:
identifying, using a backup application, a plurality of
virtual machines of a virtual application in the cloud
computing system, where the virtual application is a
logical container for the plurality of virtual machines;

wherein the cloud computing system comprises a cloud
service layer for providing storage access to a user, a
virtual center layer that hosts the backup application
and provides computing resources for a plurality of
virtual data centers accessible via the cloud service
layer, and a storage layer providing storage resources
for the plurality of virtual data centers;
wherein the virtual application is accessible via one of the
virtual data centers of the cloud service layer; and

wherein the backup application interfaces with a plurality
of plug-in modules to provide backup functionality for
the plurality of virtual machines of the virtual applica-
tion, where each plug-in module performs an operation
to place an application of any of the virtual machines in
a state to accept backup functionality, where the state of
the application is specific to an application type;

accessing, using the backup application, a workflow that
defines a plurality of actions for performing a backup
functionality for each of the plurality of virtual
machines of the virtual application, where each action
of the plurality of actions corresponding to the backup
functionality is performed by a corresponding plug-in
module; and

for each action of the plurality of actions identified from

the workflow:
(1) accessing a list of a plurality of plug-in modules by
the backup application, each of the plurality of

US 9,465,697 B2

13

plug-in modules comprising a program associated
with the backup application, the association being
made before runtime of the backup application, and
requiring an interface with the backup application to
function and provide additional functionality to the
backup application,

(i1) selecting a plug-in module from the list that is
designed to perform the action on a given virtual
machine of the virtual application, and

(iii) executing the selected plug-in module to perform
that action on the given virtual machine, the selected
plug-in module being executed by the backup appli-
cation;

wherein one of the plurality of plug-in modules per-
forms one or more unique quiesce operations for
placing an application in a state for enabling the
backup functionality, the state varies from one appli-
cation to another application; and wherein one of the
plurality of plug-in modules performs one or more
unique unquiesce operations after the quiesce opera-
tion that places the application to a state before the
quiesce operation.

2. The method of claim 1, wherein the workflow defines
a scheduling of each action relative to each other action in
the plurality of actions.

3. The method of claim 2, wherein (ii) selecting the
plug-in module and (iii) executing the selected plug-in
module are automatically performed in sequence for each
action of the plurality of actions, the sequence being defined
based on the scheduling defined in the workflow.

4. The method of claim 1, wherein one of the plurality of
plug-in modules performs a backup operation.

5. The method of claim 1, wherein one of the plurality of
plug-in modules performs a restore operation.

6. A processing system deployed in a virtual center layer
of a cloud computing system, the processing system com-
prising:

at least one processor; and

a non-transitory, machine-readable medium in communi-

cation with the at least one processor, the non-transi-
tory, machine readable medium storing instructions
that, when executed by the at least one processor, cause
the at least one processor to perform operations com-
prising:

identifying, using a backup application, a plurality of

virtual machines of a virtual application in the cloud

computing system, where the virtual application is a

logical container for the plurality of virtual machines;

wherein the cloud computing system comprises a cloud
service layer for providing storage access to a user, the
virtual center layer that hosts the backup application
and provides computing resources for a plurality of
virtual data centers accessible via the cloud service
layer, and a storage layer providing storage resources
for the plurality of virtual data centers;

wherein the virtual application is accessible via one of the

virtual data centers of the cloud service layer; and

wherein the backup application interfaces with a plurality
of plug-in modules to provide backup functionality for
the plurality of virtual machines of the virtual applica-
tion, where each plug-in module performs an operation
to place an application of any of the virtual machines in

a state to accept backup functionality, where the state of

the application is specific to an application type;

accessing, using the backup application, a workflow that
defines a plurality of actions for performing a backup
functionality for each of the plurality of virtual

5

10

20

25

30

35

40

45

50

55

60

65

14

machines of the virtual application, where each action

of the plurality of actions corresponding to the backup

functionality is performed by a corresponding plug-in
module; and

for each action of the plurality of actions identified from

the workflow:

(1) accessing a list of a plurality of plug-in modules by
the backup application, each of the plurality of
plug-in modules comprising a program associated
with the backup application, the association being
made before runtime of the backup application, and
requiring an interface with the backup application to
function and provide additional functionality to the
backup application,

(i1) selecting a plug-in module from the list that is
designed to perform the action on a given virtual
machine of the virtual application, and

(iii) executing the selected plug-in module to perform
that action on the given virtual machine, the selected
plug-in module being executed by the backup appli-
cation,

wherein one of the plurality of plug-in modules performs

one or more unique quiesce operations for placing an
application in a state for enabling the backup function-
ality, the state varies from one application to another
application; and wherein one of the plurality of plug-in
modules performs one or more unique unquiesce opera-
tions after the quiesce operation that places the appli-
cation to a state before the quiesce operation.

7. The processing system of claim 6, wherein the non-
transitory, machine-readable medium additionally stores a
configuration file, and wherein the workflow is stored in the
configuration file.

8. The processing system of claim 6, wherein the work-
flow defines a scheduling of each action relative to each
other action in the plurality of actions.

9. The processing system of claim 8, wherein the instruc-
tions cause the processor to (ii) select the plug-in module
and (iii) execute the selected plug-in module automatically
in sequence for each action of the plurality of actions, the
sequence being defined based on the scheduling defined in
the workflow.

10. A non-transitory, machine-readable medium storing
instructions that, when performed by a machine at a virtual
center layer of a cloud computing system, cause the machine
to perform operations comprising:

identifying, using a backup application, a plurality of

virtual machines of a virtual application in the cloud

computing system, where the virtual application is a

logical container for the plurality of virtual machines;

wherein the cloud computing system comprises a cloud
service layer for providing storage access to a user, the
virtual center layer that hosts the backup application
and provides computing resources for a plurality of
virtual data centers accessible via the cloud service
layer, and a storage layer providing storage resources
for the plurality of virtual data centers;

wherein the virtual application is accessible via one of the

virtual data centers of the cloud service layer; and

wherein the backup application interfaces with a plurality
of plug-in modules to provide backup functionality for
the plurality of virtual machines of the virtual applica-
tion, where each plug-in module performs an operation
to place an application of any of the virtual machines in

a state to accept the backup functionality, where the

state of the application is specific to an application

type;

US 9,465,697 B2

15

accessing, using the backup application, a workflow that
defines a plurality of actions for performing a backup
functionality for each of the plurality of virtual
machines of the virtual application, where each action
of the plurality of actions corresponding to the backup
functionality is performed by a corresponding plug-in
module; and

for each action of the plurality of actions identified from

the workflow:

(1) accessing a list of a plurality of plug-in modules by
the backup application, each of the plurality of
plug-in modules comprising a program associated
with the backup application, the association being
made before runtime of the backup application, and
requiring an interface with the backup application to
function and provide additional functionality to the
backup application,

(i1) selecting a plug-in module from the list that is
designed to perform the action on a given virtual
machine of the virtual application, and

(iii) executing the selected plug-in module to perform
that action on the given virtual machine, the selected
plug-in module being executed by the backup appli-
cation,

wherein one of the plurality of plug-in modules performs

one or more unique quiesce operations for placing an
application in a state for enabling the backup function-
ality, the state varies from one application to another
application; and wherein one of the plurality of plug-in
modules performs one or more unique unquiesce opera-
tions after the quiesce operation that places the appli-
cation to a state before the quiesce operation.

10

15

20

25

30

16

11. The non-transitory, machine-readable medium of
claim 10, wherein the workflow defines a scheduling of each
action relative to each other action in the plurality of actions.

12. The non-transitory, machine-readable medium of
claim 11, wherein the instructions cause the machine to (ii)
select the plug-in module and (iii) execute the selected
plug-in module automatically in sequence for each action of
the plurality of actions, the sequence being defined based on
the scheduling defined in the workflow.

13. The non-transitory, machine-readable medium of
claim 10, wherein the workflow is stored in the virtual center
layer of the cloud computing system.

14. The method of claim 1, wherein the backup applica-
tion queries the cloud service layer for obtaining identifier
information for identifying the plurality of virtual machines
of the virtual application.

15. The method of claim 14, wherein in response to a
query from the backup application, the cloud service layer
provides attributes associated with the virtual application,
where the attributes include identifiers used by the virtual
application to identify the plurality of virtual machines.

16. The processing system of claim 6, wherein in response
to a query from the backup application, the cloud service
layer provides attributes associated with the virtual applica-
tion, where the attributes include identifiers used by the
virtual application to identify the plurality of wvirtual
machines.

17. The non-transitory, machine-readable medium of
claim 10, wherein in response to a query from the backup
application, the cloud service layer provides attributes asso-
ciated with the virtual application, where the attributes
include identifiers used by the virtual application to identify
the plurality of virtual machines.

#* #* #* #* #*

